

STATUS OF AVAILABLE MACRO AND MICRONUTRIENTS IN THE SOILS OF SOMESHWAR WATERSHED IN ALMORA DISTRICT OF UTTARAKHAND

G. S. YUREMBAM*, HARISH CHANDRA AND VINOD KUMAR

*Irrigation and Drainage Engineering Department,

G. B. Pant University of Agriculture and Technology, Pantnagar - 263 145, Uttarakhand e-mail: gyurembam@gmail.com

INTRODUCTION

Soil is a diverse complex that can be defined as a mixture of minerals and organic materials, which are capable of supporting plant life (Ayoub et al. 2007, Brady et al. 1990). Soil contains 13 out of 16 different elements essential for plant growth (Raven et al., 1995). However, only small amounts of nutrients are available for plants (McLean and Watson, 1985). Nutrients become available through mineral weathering and through decomposition of organic matter into inorganic mineral which are absorbed by plants in the form of ions. Soil nutrients are threatening agriculture potentials, because their availability depends on SOM content, soilpH, adsorptive surface, soil texture and nutrient interactions in the soil. Also the efforts to enhance soil macro and micronutrients are constrained by lack of up-todate data. Hence, such kinds of interventions depend on major national soil survey information dating back to the 1980s(FAO). Millions of hectares of land worldwide are low in available micro-nutrients, and many of these deficiencies were further aggravated by the increased demands of more rapidly growing crops for available forms of micro-nutrients (Rengel, 2007, Alloway, 2008). The solubility and availability of micro-nutrients is largely influenced by clay content, pH, SOM, CEC, phosphorus level in the soil and tillage practices (Fisseha, 1992).

Soil related limitations affecting the crop productivity including nutritional disorders can be determined by evaluating the fertility status of the soils.Soil testing provides the information about the nutrient availability of the soil upon which the fertilizer recommendation for maximizing crop yield is made.Original geologic substrate and subsequent geochemical and pedogenic regimes determine the total amounts of micro- nutrients in soils. However, total amount is rarely indicative of the availability by plant, because availability depends on soil pH, organic matter content, adsorptive surfaces and other physical, chemical and biological conditions in the rhizosphere.

Plants absorb nutrients differentially from various fractions and remove their varying quantities from soil. Since different fractions of the element have different solubility and the amount of each depends on various soil characteristics. It is also important to examine the relationships of the major physical and chemical properties of soils with their available form for a better understanding of their available pool in the soil. Such information is potentially valuable in predicting bioavailability, metal leaching rates, and transformations between chemical forms in agricultural and polluted soils. Maintenance of fertility of soils is of immense concern to obtain harness higher yields. The soil fertility evaluation can forecast for suitable cropping system in the state. Considering the views cited above, an attempt was made to analyze the soil fertility, status of macro and micro-nutrients and their inter-relationship of the irrigated soils of Someshwar watershed in Almora district of Uttarakhand.

ABSTRACT

A study was conducted in agricultural area of Someshwar Watershed to analyze the soil fertility, status of macro and micro-nutrients and their inter-relationship.In general the soil of the region was sandy-loam type with high organic content and acidic in nature. The surface soil (0-15 cm) was found rich in both macro- and micro- nutrients as compared to the sub-surface soil (15-30 cm). The nitrogen, phosphorus and potassium content in surface soil varied from 248-470.73, 17.8-33 and 59.2-319.2 kg/ha respectively, as compared to 147.35-488.78, 13.4-27.6 and 35- 206 kg/ha, respectively in sub-surface soil. Sodium and sulphur in the surface soil were found in the range of 12-33 and 52-112 mg/kg respectively, whereas in sub-surface soil it ranged from 7 -27 and 51-109 mg/kg respectively. Micronutrients *i.e.*, Copper, Manganese, Zinc and Iron in the surface soil varied from 0.12-4.52, 1.2-5.9, 0.18-1.29 and 32-83.7 mg/kg, respectively as compared to 0.13-1.38, 0.3-4.7, 0.16-1.27 and 21.3-71.2 mg/kg, respectively in sub-surface soil. The inter-relationship analysis among the soil chemical properties indicated that the micro- nutrient cations were significantly correlated with each other signifying the dynamic equilibrium among them.

KEY WORDS Macro nutrient Micronutrient Soil fertility Watershed								
Dessived		05 00 0015						
Received		05.02.2015						
Revised		05.02.2015 25.05.2015						
Revised Accepted		25.05.2015 15.10.2015						

MATERIALS AND METHODS

The present investigation was carried out to assess some macro and micro-nutrient status of the soils of Someshwar agricultural watershed, Uttarakhand (India).The study area falls under Almora district of Uttarakhand state of India, located between latitude of 29°.76'N and longitude of 79°.60'E.with an average elevation of about 1430m above mean sea level. Soil was well drained with average thickness ranging from 0.1 to 0.5 m. The color of soil ranges from light to moderately dark. The average annual rainfall is about 1152 mm. The maximum and minimum humidity ranged from 66 to 98 per cent and 25 to 67 per cent, respectively. The mean maximum and minimum temperatures were found to be 28.2 and -1.2°C, respectively. Agricultural activity is solely dependent upon seasonal rainfall in the area.

Collection and preparation of samples

Soil samples were collected from two depths (0 - 15 cm and 15 - 30 cm) from the agricultural watershed. All the composite soil samples were air-dried, ground and passed through 2 mm sieve for chemical analysis. All the samples were stored in the polythene bags for further analysis.

Analytical methods for soil samples

The soil samples were analyzed for pH, EC, OC, available N, P, K, S, DTPA extractable Fe, Mn, Zn and Cu.The analytical procedures adopted and their references are given in Table 1. Statistical analysis was done with Scientifica (7) to establish the correlation among the soil chemical properties.

Categorization of soil nutrient statusand nutrient indices

The nutrient index (NI) values for available nutrients present in the soils were calculated utilizing the formula suggested by Parker *et al.* (1951) and classified this index as low (<1.67), medium (1.67 to 2.33) and high (>2.33).

The following equation was used to calculate Nutrient Index Value

Nutrient Index (NI) = $(N_1 * 1) + (N_m * 2) + (N_h * 3)/N_t$(1) Where

- N_t = Total number of samples analyzed for a nutrient in any given area.
- N₁ = Number of samples falling in low category of nutrient status.
- N_m = Number of samples falling in medium category of nutrient status.
- $N_h =$ Number of samples falling in high category of nutrient status.

RESULTS AND DISCUSSION

Physio-Chemical Properties

The textural class of the surface soil (0-15 cm) varied from clay, sandy loam, loam and loamy sand whereas in case of sub-surface soils (15-30 cm) it varied from clay loam, sandy clay loam, sandy loam, loam, silty clay loam and clay. In general sandy loam soil was found in the agricultural soils of Someshwar watershed. The pH value of surface soils varied from 6.1 to 6.7 with a mean value of 6.4 and for sub surface soils it varied from 6.1 to 6.8 with a mean value of 6.45 respectively, which indicated that these soils are acidic in reaction with the surface soils being more acidic in nature, whereas EC of surface soil ranged from 60 to 150 μ s/cm with a mean value of 105 μ s/cm and of sub-surface soil from 50 to 90 μ s/cm with a mean value of 70 μ s/cm.The percent organic carbon content in surface soils ranged from 0.9 to 2.12 per cent with the mean value of 1.51 per cent and in subsurface soil it ranged from 0.5 to 1.2 per cent with the mean value of 0.85 per cent. The percent organic carbon content was observed to be higher in the top soil layers. This might be due to increased rate of decomposition of organic matter as concluded by Rashmi et al. (2009). The concentration of

Table 1: Details of the analytical methods followed in soil analysis

SI.No	Soil characteristics	Method of estimation	Reference
1	pH (1: 2 soil : water)	pH meter	Jackson (1973)
2	Electrical conductivity	EC bridge	Jackson (1973)
3	Organic carbon	Walkley and Black wet oxidation method.	Jackson (1973)
4	Available N	Alkali permanganate method	Subbiah and Asija (1956)
5	Available P	Spectrophotometer method using Bray reagents.	Black (1965)
6	Available K and Na	Flame photometer method using neutral normal ammonium acetate as extractant	Jackson (1973)
7	Available S	Calcium Chloride extraction method	Williams and Steinbergs (1959)
8	DTPA extractable Fe Mn, Zn, Cu	Atomic absorption spectrophotometer method using DTPA as extractant	Lindsay and Norvell (1978)

Table 2: Rating limits for available soil nutrients

Nutrient	Low	Medium	High
N (kg/ha)	< 280	280-560	> 560
P (kg/ha)	<10	10-25	>25
K (kg/ha)	<108	108-280	>280
S(mg/kg)	<10	10-20	>20
Fe (mg/kg)	<4.8	4.8-8.0	> 8.0
Mn (mg/kg)	< 2	2-4	> 4
Zn (mg/kg)	<0.6	0.6-1.2	> 1.2
Cu (mg/kg)	< 0.2	0.2-0.4	> 0.4
Nutrient Indices (NI)	<1.67	1.67-2.33	>2.33

physical and chemical properties of surface and sub-surface soils is elaborated in Table 3 and 4, respectively.

Available macro and micronutrients

The available N, P, K in the surface soil ranged from 235.15 to 470.73, 16.3 to 33 and 59.2 to 319.2 kg ha⁻¹ with the mean value of 352.94,24.65 and 189.2 kg ha⁻¹ respectively, whereas in sub-surface soil, it ranged from 147.35 to 488.78, 13.4 to 29.70 and 35 to 153.5 kg ha⁻¹ with the mean value of 318.06, 21.55 and 94.25 kg ha⁻¹ respectively. A higher concentration

Soil sampl	e Elevation (m)	Surface soil	(0-15 cm)			pН	EC	% OC
_		Sand (%)	Silt (%)	Clay (%)	Texture	-		
S-1-A	1395.00	18.00	35.08	46.92	CLAY	6.30	70.00	0.90
S-3-A	1406.00	61.86	22.94	15.21	SANDY LOAM	6.50	150.00	1.20
S-5-A	1417.00	68.29	16.00	15.71	SANDY LOAM	6.70	70.00	1.05
S-7-A	1408.00	62.07	22.93	15.00	SANDY LOAM	6.60	90.00	1.10
S-9-A	1400.00	49.00	29.00	22.00	LOAM	6.10	60.00	1.22
S-1-B	1384.00	42.79	29.57	27.64	LOAM	6.70	110.00	0.95
S-3-B	1400.00	8.00	26.00	66.00	CLAY	6.50	120.00	1.25
S-5-B	1434.00	73.28	25.30	1.42	SANDY LOAM	6.10	90.00	1.40
S-7-B	1412.00	8.00	26.00	66.00	CLAY	6.30	70.00	1.10
S-9-B	1388.00	61.93	24.07	14.00	SANDY LOAM	6.50	110.00	0.98
S-1-C	1500.00	54.00	29.07	16.93	SANDY LOAM	6.50	80.00	1.60
S-3-C	1487.00	51.78	28.12	20.08	LOAM	6.20	70.00	1.45
S-5-C	1526.00	73.42	17.30	9.28	SANDY LOAM	6.40	50.00	1.10
S-7-C	1518.00	54.36	31.86	13.78	SANDY LOAM	6.30	70.00	0.87
S-9-C	1514.00	61.86	21.14	17.00	SANDY LOAM	6.50	110.00	1.17
S-1-D	1510.00	77.08	9.35	13.57	SANDY LOAM	6.50	120.00	2.12
S-3-D	1497.00	79.30	16.78	3.93	LOAMY SAND	6.50	70.00	1.05
S-5-D	1143.00	61.86	26.14	12.00	SANDY LOAM	6.70	90.00	1.87
S-1-E	1428.00	68.22	16.50	15.28	SANDY LOAM	6.30	70.00	2.21
S-1-F	1435.00	73.08	21.06	5.86	LOAMY SAND	6.20	70.00	2.14
1								

Table 3: Physical and chemical properties of surface soils

Table 4: Physical and chemical properties of sub-surface soils

Soil sample	Elevation (m)	Sub-Surface	e soil (15-30 cm)		pН	EC	% OC
-		Sand (%)	Silt (%)	Clay (%)	Texture	-		
S-2-A	1395	53.78	26.22	20	LOAM	6.8	70	0.53
S-4-A	1406	68.848	29.728	1.424	SANDY LOAM	6.3	70	0.95
S-6-A	1417	59.144	23.928	16.928	SANDY LOAM	6.7	70	0.98
S-8-A	1408	45.928	21.072	33.072	CLAY LOAM	6.7	70	0.75
S-10-A	1400	63.072	24	12.928	SANDY LOAM	6.7	50	0.85
S-2-B	1384	32.78	29.58	37.64	CIAYIOAM	6.2	60	0.5
S-4-B	1400	74.36	16.216	9.424	SANDY LOAM	6.4	50	0.75
S-6-B	1434	56	21.928	22.072	SANDY LOAM	6.7	70	1
S-8-B	1412	61.28	21.576	17.144	SANDY LOAM	6.8	70	0.85
S-10-B	1388	52	27.072	20.928	SANDY CLAY LOAM	6.8	90	0.52
S-2-C	1500	61.856	21.072	17.072	SANDY LOAM	6.1	60	1.1
S-4-C	1487	12.08	47.92	40	SILTY CLAY LOAM	6.1	60	0.95
S-6-C	1526	4	30	66	CLAY	6.6	70	0.56
S-8-C	1518	57	23	20	SANDY LOAM	6.2	50	0.81
S-10-C	1514	61.856	22.936	15.208	SANDY LOAM	6.4	50	0.6
S-2-D	1510	68.304	23.928	7.768	SANDY LOAM	6.5	70	1.2
S-4-D	1497	54	29.08	16.92	SANDY LOAM	6.6	80	0.99
S-6-D	1143	41.928	28.072	30	CLAY LOAM	6.7	80	0.83
S-2-E	1428	57.86	25.14	17	SANDY LOAM	6.5	70	1.03
S-2-F	1435	31.78	32.12	36.08	CLAY LOAM	6.7	50	0.99

of available nitrogen, phosphorous and potassium was found in surface soil than in sub-surface soil. Sulphur and Sodium content in the surface soils was found in the range from 52 to 112 and 11 to 33 mg kg⁻¹with the mean value of 82 and 22 mg kg⁻¹ respectively, whereas, in the sub-surface soils, it was found in the range of 32 to 109 and 7 to 27 mg kg⁻¹with the mean value of 70.5 and 17 mg kg⁻¹ respectively. The concentration of surface soils was more in surface soils than as in sub-surface soils. The overall concentrations of primary soil nutrients are shown in Table 5 and 6.

DTPA-Fe, Mn, Zn and Cu content in the surface soils of Someshwar watershed ranged from 30 to 83.7, 1.2 to 5.9, 0.10 to 1.29 and 0.12 to 4.52 mg kg⁻¹ with a mean value

56.85, 3.55, 0.695 and 2.32 mg kg-1, respectively. In the subsurface soils DTPA-Fe, Mn, Zn and Cu content ranged from 21.3 to 71.2, 0.3 to 4.7, 0.01 to 1.29 and 0.13 to 1.38 mg kg⁻¹ with a mean value of 46.25, 2.5, 0.64 and 0.75 respectively. The overall concentration of micronutrients in the soil is given in Table 7.

Correlation coefficient

The overall correlation studies between physicochemical properties and available micronutrients of the surface and subsurface soils are presented in Table (9)& (10).Positive and significant correlation coefficients were observed between elevation-Nitrogen ($r=0.601^{**}$), elevation-phosphorous ($r=0.636^{**}$) and elevation-iron ($r=0.574^{**}$). Soil pH showed

Soil sample	Elevation	Concentration				
		N (Kg/ha)	P (Kg/ha)	K (kg/ha)	Na (mg/kg)	S (mg/kg)
S-1-A	1395.00	248.15	27.80	100.80	14.00	62.00
S-3-A	1406.00	306.56	29.60	173.60	17.00	95.00
S-5-A	1417.00	380.04	28.40	319.20	15.00	98.00
S-7-A	1408.00	250.14	26.40	59.20	15.00	86.00
S-9-A	1400.00	278.25	23.20	120.00	31.00	75.00
S-1-B	1384.00	272.05	17.80	123.40	12.00	22.00
S-3-B	1400.00	310.14	22.70	117.60	14.00	110.00
S-5-B	1434.00	400.07	24.60	33.60	24.00	96.00
S-7-B	1412.00	307.28	21.50	161.60	24.00	87.00
S-9-B	1388.00	235.15	16.30	132.60	18.00	53.00
S-1-C	1500.00	500.35	31.20	210.50	27.00	105.00
S-3-C	1487.00	359.15	29.80	196.00	33.00	87.00
S-5-C	1526.00	421.15	33.00	89.60	29.00	87.00
S-7-C	1518.00	350.13	29.50	78.90	11.00	96.00
S-9-C	1514.00	458.73	27.40	111.40	15.00	63.00
S-1-D	1510.00	470.73	26.40	89.60	28.00	54.00
S-3-D	1497.00	358.15	23.40	168.00	31.00	76.00
S-5-D	1143.00	274.17	17.80	72.80	15.00	52.00
S-1-E	1428.00	350.13	28.50	84.00	32.00	112.00
S-1-F	1435.00	470.45	29.00	72.80	28.00	105.00

Table 6: Concentration of primary and secondary nutrients content in sub-surface soils

Soil sample	Elevation	Concentration				
		N (Kg/ha)	P (Kg/ha)	K (kg/ha)	Na (mg/kg)	S (mg/kg)
S-2-A	1395	170.5	26.00	72.8	13	56
S-4-A	1406	258.19	27.50	106.4	7	62
S-6-A	1417	381.38	29.70	206	11	68
S-8-A	1408	147.35	21.50	35	11	76
S-10-A	1400	175.5	18.70	95	25	87
S-2-B	1384	273.45	16.00	33.6	9	32
S-4-B	1400	270.15	17.80	44.8	11	90
S-6-B	1434	412.28	13.20	72.8	20	87
S-8-B	1412	306.24	17.60	93.6	16	76
S-10-B	1388	225.15	15.00	71.5	16	39
S-2-C	1500	488.78	24.70	153.5	18	98
S-4-C	1487	356.23	23.20	67.2	18	71
S-6-C	1526	420.05	27.60	54.5	15	75
S-8-C	1518	348.05	22.40	62.3	10	87
S-10-C	1514	434.54	21.30	87.6	13	51
S-2-D	1510	456.45	22.30	39.2	23	67
S-4-D	1497	356.5	19.00	140	27	51
S-6-D	1143	274.12	13.40	35.7	12	57
S-2-E	1428	348.24	21.30	61.6	15	109
S-2-F	1435	468.78	21.00	95.2	21	98

negative and significant correlation with Sodium (r = -0.542^*) in surface soils. Available nitrogen showed positive and significant correlation with Phosphorous (r = 0.600^{**}), organic carbon (r = 0.474^*) and sand (r= 0.449^*) and negative significant correlation with silt (r= -455^*). Positive and significant correlation were observed between phosphoroussulphur (r= 0.616^{**}) and phosphorous-lron (r= 0.447^*). Sodium showed positive and significant correlation with organic carbon (r= 0.506^*). Organic carbon showed positive and significant correlation with copper (r= 0.539^*). Zinc also showed positive significant correlation with silt (r= 0.470^*). Manganese showed positive and significant correlation with sand (r= -0.627^{**}), also sand showed negative and significant correlation with silt+clay $(r=-0.963^{**})$.

Analysis of correlation of soil properties with various nutrients in sub-surface soils are given in Table-10. A positive correlation were observed between elevation-nitrogen($r=0.519^*$), elevation-phosphorous ($r=.472^*$) and elevation-iron ($r=.516^*$). Soil pH showed positive and significant correlation with Soil EC ($r=0.468^*$). Available nitrogen showed positive and significant correlation with organic carbon ($r=0.501^*$) and also with copper ($r=0.698^{**}$). Organic carbon showed positive and significant correlation with sulphur ($r=0.554^*$) and manganese ($r=0.495^*$). Phosphorous showed positive and significant correlation with potassium ($r=0.455^*$). Sodium showed positive and significant correlation with

Soil sample	concentration	in surface so	oils		Soil sample	Concentratio	on in sub-surfac	e soils	
	Cu (mg/kg)	Zn (mg/kg)	Mn (mg/kg)	Fe (mg/kg)		Cu (mg/kg)	Zn (mg/kg)	Mn (mg/kg)	Fe (mg/kg)
S-1-A	0.25	0.65	2.20	32.00	S-2-A	0.42	0.58	0.9	23.2
S-3-A	0.21	0.33	5.90	47.80	S-4-A	0.24	0.16	0.3	31.5
S-5-A	1.25	0.18	5.60	33.00	S-6-A	0.24	0.39	2.4	21.3
S-7-A	0.12	0.22	3.80	59.10	S-8-A	0.22	0.16	1.27	58.2
S-9-A	0.18	0.40	2.92	56.30	S-10-A	0.24	0.38	1.06	52.3
S-1-B	0.35	0.58	1.80	33.30	S-2-B	0.53	0.55	0.9	23.5
S-3-B	0.25	0.41	1.60	53.50	S-4-B	0.21	0.01	2.3	37
S-5-B	0.65	1.29	4.30	62.00	S-6-B	0.73	1.27	3.2	42.8
S-7-B	0.36	0.16	1.20	57.20	S-8-B	0.25	0.1	0.4	37.4
S-9-B	0.16	0.56	1.58	34.50	S-10-B	0.28	0.32	0.14	21.4
S-1-C	1.25	0.70	2.11	78.40	S-2-C	1.26	0.55	0.16	71.2
S-3-C	0.08	1.25	2.43	56.80	S-4-C	0.13	0.69	1.9	52.1
S-5-C	0.63	0.47	2.08	77.40	S-6-C	1.2	0.45	1.98	71
S-7-C	0.24	0.83	2.06	83.70	S-8-C	0.84	0.76	1.6	74.3
S-9-C	0.26	0.76	1.58	66.00	S-10-C	1.25	0.72	0.11	58.9
S-1-D	1.33	0.21	3.50	54.20	S-2-D	1.38	0.14	4.7	34
S-3-D	0.09	0.10	2.30	52.00	S-4-D	0.53	0.4	0.9	47.3
S-5-D	0.17	1.18	2.60	37.50	S-6-D	1.2	0.98	1.4	31.6
S-1-E	4.52	0.46	3.80	30.00	S-2-E	1.08	0.88	3.1	23.4
S-1-F	0.12	0.61	2.50	35.80	S-2-F	1.23	0.58	1.8	22.5

Table 7: Concentration of micronutrient in the soil

Table 8: Percent samples falling in low, medium and high categories of essential nutrients and nutrient indices (number of samples = 40)

Nutrient	Low	Medium	High	Nutrient Indices (NI)
N	14 (35)	26(65)	0	1.65 (Medium)
Р	0	24 (60)	16 (40)	2.4 (Medium)
К	26 (65)	13 (32)	1(2.5)	1.375 (Medium)
S	0	0	40(100)	3.00 (High)
Fe	0	0	40 (100)	3.00 (High)
Mn	20 (50)	16 (40)	4(10)	1.60 (Medium)
Zn	26 (65)	11 (27.5)	3(7.5)	1.425 (Low)
Cu	8 (20)	14 (14)	18(45)	2.25 (Medium)

Note: Values in parenthesis are per cent soil samples.

Table 9: Simple correlation	coefficient among	the soil pro	nerties and a	available nutrients	in surface soil
rabic 5. Simple correlation	coefficient among	, uic son pro	per nes anu a		in surface son

	pН	Ec	Ν	Р	К	Na	OC	S	Cu	Zn	Mn	Fe	Silt	Sand	Silt+Clay
Elevt.	319	164	.601**	.636**	.134	.360	131	.304	.111	215	085	.574**	261	.209	156
pН		.43	14	295	.318	542*	150	396	046	301	.090	229	246	.079	008
Ec			114	294	044	443	.016	263	142	071	.222	162	108	044	.089
N				.600**	.096	.425	$.474^{*}$.349	.233	.088	.039	.431	455*	.449*	372
Р					.146	.299	.150	.616**	.253	009	.312	.447*	173	.254	239
K						.034	253	.144	.011	303	.233	111	089	084	.130
Na							.506*	.297	.341	043	.007	.121	378	.344	276
OC								.227	.539*	.161	.178	213	441	.365	278
S									.328	062	.304	.291	105	.012	.023
Cu										136	.292	221	415	.221	118
Zn											144	.140	.470*	.066	242
Mn												227	374	.453*	404
Fe													.108	.049	095
Silt														627**	.393
Sand															963**

**. Correlation is significant at the 0.01 level (2-tailed);*. Correlation is significant at the 0.05 level (2-tailed).

organic carbon ($r=0.459^{*}$). Silt showed negative and significant correlation with sand ($r=-0.724^{**}$) and positive correlation with silt+clay ($r=0.475^{*}$). Negative and significant correlation was observed between sand and silt+clay ($r=-0.951^{**}$).

The DTPA-Zn was found low in soils whereas medium for DTPA-Mn and Cu and higher nutrient indices for DTPA Fe, according to Parker et al.(1951). The nutrient index values of Fe, Mn, Zn and Cu were 3.0, 1.60, 1.425 and 2.25 respectively of the agricultural soils of Someshwar watershed. Among the primary nutrients N, P, K was found to be in medium range

Soil nutrient index value

G. S. YUREMBAM et al.,

Table 10: Simple correlation coefficient among the soil properties and available nutrients in sub-surface soil.

	-					-									
	pН	Ec	Ν	Р	К	Na	OC	S	Cu	Zn	Mn	Fe	Silt	Sand	Silt+Clay
Elevt.	381	338	.519*	.472*	.234	.293	.173	.219	.157	145	.133	.516*	.048	048	.040
рН		.468*	325	227	.033	.242	162	078	130	075	.057	409	266	.074	.025
Ec			212	149	.028	.050	035	436	112	020	015	357	.087	062	.041
N				.199	.309	.311	.501*	.305	.698**	.293	.341	.238	.093	129	.122
Р					.455*	220	.134	.157	.016	278	.023	.192	.156	092	.047
К						.190	.374	.093	136	086	242	013	050	.257	305
Na							.459*	.201	.193	.059	.239	.102	.137	019	038
OC								$.554^{*}$.233	.062	.495*	.013	.016	.300	389
S									.227	.140	.381	.270	237	.129	059
Cu										.418	.286	.214	092	116	.189
Zn											.158	.074	.207	264	.244
Mn												162	034	004	.021
Fe													077	169	.250
Silt														724**	$.475^{*}$
Sand															951**

with an index value of 1.65, 2.4 and 1.375 respectively. Sulphur was found high in the soils with an index value of 3. The nutrients index values are presented in Table 8.

ACKNOWLEDGEMENT

The authors are highly thankful to Department of Science & Technology (DST), Ministry of Human Resource and Development (MHRD), Govt. of India, College of Technology (GBPUAT, Pantnagar) for providing the financial support and necessary facilities respectively to carry out this study.

REFERENCES

Alloway, B. J. 2008. Micronutrient Deficiencies in Global Crop Production. *Springer*, Netherlands.

Athokpam, H., Wani, H. S., Kamei, D., Athokpam, S. H., Nongmaithem, J., Kumar, D., Singh, Y. K., Naorem, B. S., Devi, T. R and Devi, L. 2013. Soil macro-and micro-nutrient status of Senapati district, Manipur (India). *African J. Agricultural Research.* 8 (39): 4932-4936.

Ayoub, A. S., McGaw, B. A., Shand, C. A. and Mid-wood, A. J. 2003. Phytoavailability of Cd and Zn in Soil Estimated by Stable isotope Exchange and Chemical Extraction, *Plant and Soil*. **152(2)**: 291-300.

Barghouti, Z., Amereih, S., Natsheh, B. and Salman, M. 2012. Analysis of Macro and Micronutrients in Soils from Palestine Using Ion Exchange Membrane Technology. *Open J. Soil Science*. **2:** 44-49.

Black, C. A. 1965. Methods of Soil Analysis, part 2. Chemical and Microbiological Properties, ASA, Inc. Madison, Wis, USA.

Brady, N. C. 1990. The Nature and Properties of Soils. *Mac-Millan Publishing Company*, New York.

Cheng, K. L. and Bray, R. H. 1951. Determination of calcium and magnesium in soil and plant. J. Soil Sci. 72: 449-458.

Choudhary, B. L. and Bhatia, S. 2008. Salient soil properties of Sagware tehsil of dungarpur district. 2(1): 073-076.

Cope, J. T. and Evans, E. T. 1985. Soil testing. Adv. Soil Sci. 1: 201-228.

Durand, R., Bellon, N. and Jaillard, B. 2001. Determining the Net

Flux of Charge Released by Maize Roots by Directly Measuring Variations of the Alkalinity in the Nutrient Solution, *Plant and Soil*. **229(2):** 305-318.

Fisseha, I. 1992. Macro and micronutrients distribution in Ethiopian Vertisols landscapes. *Ph.D. Dissertation submitted to Institute fur Bondenkunde und Standortslehre, University of Hohenheim, Germany*. p. 201.

Jackson, M. L. 1973. Soil chemical analysis. Prentice Hall of India (P)Ltd., New Delhi.

Lindsay, W. L. and Norvell, W. A. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper. *Soil Sci. Soc. Am. J.* 442: 421-428.

McLean, E. O. and Watson, M. E. 1985. Soil Measurements of Plant-Available Potassium, In: R. D. Munson, Ed., *Po-tassium in Agriculture, Soil Science Society of America, Madison*. pp. 227-308.

Naik, S. K. 2014. Distribution of Nitrogen, Phosphorous, Potassium and Zinc content in Mango Grown Acidic Soils of Jharkhand. *The Ecoscan.* 8(1&2): 135-139.

Parker, F. W., Nelson, W. L., Winter, E. and Miller, I. E. 1951. The broad interpretation of soil test informations. *Agronomy. J.* **43**: 105-112.

Rashmi, I., Dasog, G. S., Bhanuprakash, U. H. and Lalitha, H. 2009. Physico-chemical properties of paddy growing soils of upper Krishna project in Karnataka. J. Soils and Crops. **19**: 49-53.

Raven, P. H., Linda, R. B and George, B. J. 1995. Environment, Saunders College Publishing, Orlando.

Rengel, Z. 2007. Cycling of micronutrients in terrestrial ecosystems. *Springer*-Verlag, Berlin, Heidelberg. pp. 93-121.

Subbiah, B. V. and Asija, C. L. 1956. A rapid procedure for the determination of available nitrogen in soils. *Current Sci.* 25: 259-260.

Walkley, J. and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of chromic acid titration method. *Soil Science*. **37**: 29-38.

Williams, C. H. and Steinberg, A. 1959. Soil sulphur fractions as chemical indices of available soils in some Australian soils. *Aust. J. Agric. Res.* 10: 340-352.